Structural Convergence Among Diverse, Toxic β-Sheet Ion Channels

نویسندگان

  • Hyunbum Jang
  • Fernando Teran Arce
  • Srinivasan Ramachandran
  • Ricardo Capone
  • Ratnesh Lal
  • Ruth Nussinov
چکیده

Recent studies show that an array of beta-sheet peptides, including N-terminally truncated Abeta peptides (Abeta(11-42/17-42)), K3 (a beta(2)-microglobulin fragment), and protegrin-1 (PG-1) peptides form ion channel-like structures and elicit single channel ion conductance when reconstituted in lipid bilayers and induce cell damage through cell calcium overload. Striking similarities are observed in the dimensions of these toxic channels irrespective of their amino acid sequences. However, the intriguing question of preferred channel sizes is still unresolved. Here, exploiting ssNMR-based, U-shaped, beta-strand-turn-beta-strand coordinates, we modeled truncated Abeta peptide (p3) channels with different sizes (12- to 36-mer). Molecular dynamics (MD) simulations show that optimal channel sizes of the ion channels presenting toxic ionic flux range between 16- and 24-mer. This observation is in good agreement with channel dimensions imaged by AFM for Abeta(9-42), K3 fragment, and PG-1 channels and highlights the bilayer-supported preferred toxic beta-channel sizes and organization, regardless of the peptide sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing Structural Features of Alzheimer’s Amyloid-β Pores in Bilayers Using Site-Specific Amino Acid Substitutions

A current hypothesis for the pathology of Alzheimer's disease (AD) proposes that amyloid-β (Aβ) peptides induce uncontrolled, neurotoxic ion flux across cellular membranes. The mechanism of ion flux is not fully understood because no experiment-based Aβ channel structures at atomic resolution are currently available (only a few polymorphic states have been predicted by computational models). St...

متن کامل

The cellular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication.

Formation of aberrant protein conformers is a common pathological denominator of different neurodegenerative disorders, such as Alzheimer's disease or prion diseases. Moreover, increasing evidence indicates that soluble oligomers are associated with early pathological alterations and that oligomeric assemblies of different disease-associated proteins may share common structural features. Previo...

متن کامل

Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold

The ICK (inhibitor cystine knot) defines a large superfamily of polypeptides with high structural stability and functional diversity. Here, we describe a new scorpion venom-derived K+ channel toxin (named λ-MeuKTx-1) with an ICK fold through gene cloning, chemical synthesis, nuclear magnetic resonance spectroscopy, Ca2+ release measurements and electrophysiological recordings. λ-MeuKTx-1 was fo...

متن کامل

Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure.

Parkinson's disease is an age-related movement disorder characterized by the presence in the mid-brain of amyloid deposits of the 140-amino-acid protein AS (α-synuclein). AS fibrillation follows a nucleation polymerization pathway involving diverse transient prefibrillar species varying in size and morphology. Similar to other neurodegenerative diseases, cytotoxicity is currently attributed to ...

متن کامل

Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to beta-sheet in amyloid fibril formation

Amyloid cascades that lead to peptide β-sheet fibrils and plaques are central to many important diseases. Recently, intermediate assemblies of these cascades were identified as the toxic agents that interact with cellular machinery. The location and cause of the transformation from a natively unstructured assembly to the β-sheet oligomers found in all fibrils is important in understanding disea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2010